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Abstract. By revealing complex fiber structure through the orientation 

distribution function (ODF), q-ball imaging has recently become a popular 

reconstruction technique in diffusion-weighted MRI. In this paper, we propose 

an analytical dimension reduction approach to ODF maxima extraction. We 

show that by expressing the ODF, or any antipodally symmetric spherical 

function, in the common fourth order real and symmetric spherical harmonic 

basis, the maxima of the two-dimensional ODF lie on an analytically derived 

one-dimensional space, from which we can detect the ODF maxima. This 

method reduces the computational complexity of the maxima detection, without 

compromising the accuracy. We demonstrate the performance of our technique 

on both artificial and human brain data. 

1 Introduction 

Diffusion-weighted MRI significantly extends the scope of the information obtained 

from MRI, from being solely spatially dependent to being defined on the spatial-

orientational domain. Fiber microstructure and orientation are inferred using this 

modality from the locally measured diffusion profile of water molecules. Diffusion 

tensor imaging (DTI) [1] effectively models the diffusion in single-fiber voxels as a 

Gaussian represented by its covariance tensor. As for more complex fiber 

architecture, q-ball imaging (QBI) [2]–[6] has been very successful in revealing 

intravoxel fiber orientations by introducing the orientation distribution function 

(ODF) as the probability of diffusion in a given direction. 

Contrary to DTI, where the principal diffusion direction can be readily computed 

as the major eigenvector of the diffusion tensor, QBI provides a continuous spherical 

function which, although clearly illustrates the major diffusion orientations as its 

maxima, does not directly quantify them. Diffusion directions as vectors carry less 

information than the ODF itself does. On the other hand, their easy interpretation and 

their application in tractography, e.g., [7]–[9], make the ODF maxima extraction an 

important post-processing step still to be carefully addressed. The number of peaks 

can also be interpreted as a measure of white matter complexity. In addition, unlike 

mixture models that calculate fiber directions by describing the diffusion signal as the 

sum of finite discrete unidirectional components, ODF maxima are computed without 

any assumptions about the existence of such components. 



Exhaustive search via finite difference method has been exploited in the literature 

as a straightforward approach to ODF maxima extraction [3,10]. This generally 

requires a two-dimensional (2D) discretization of the unit sphere, resulting in 

computational complexity that grows quadratically with the desired resolution. 

Numerical optimization approaches such as gradient ascent [11], Newton-Raphson 

techniques [12], and Powell’s method [13], have also been employed. These 

techniques require a guarantee of convergence and careful initialization to obtain all 

the maxima. Lastly, polynomial based approaches, [14]–[16], have been proposed to 

extract the maxima as a subset of the stationary points of the ODF. These methods 

exploit a transformation of the real and symmetric spherical harmonic (RSSH) basis 

(most efficient for ODF reconstruction [3]), to the constrained symmetric tensor or 

constrained homogenous polynomial bases, resulting in polynomial equations which 

are solved numerically. 

In this paper, we propose a polynomial based approach to reduce the problem of 

ODF maxima extraction in the fourth order RSSH basis, from a 2D search on the 

sphere, to a one-dimensional (1D) one on an analytically-derived curve. Compared to 

the 2D problem, this approach significantly reduces the computational complexity of 

the search for the maxima of the ODF – or any antipodally symmetric spherical 

function – without compromising the precision. Contrary to [14]–[16], our method 

works directly in the RSSH basis and does not require the extra step of transforming 

the RSSH coefficients to other tensor-based bases. We suggest a discretization 

scheme for the 1D exhaustive search, and show experimental results on both artificial 

and human brain data. 

We start Sec.  2 with a brief review of the RSSH basis, and continue by describing 

our mathematical derivation. Experimental results are presented in Sec.  3. 

2 Methods 
2.1 ODF in Real and Symmetric Spherical Harmonic Basis 

In this work, we use the estimator derived in [6] to compute the ODF in constant solid 

angle (CSA). The original definition of the QBI ODF [2] does not include the 

Jacobian factor ��, thereby creating the need for normalization and artificial 

sharpening. In contrast, the estimator in [6] is normalized, dimensionless, and has 

been shown to preserve the natural sharpness of the ODF. 

The spherical harmonic basis is commonly used for representing spherical 

functions such as the ODF, allowing for sampling in any desired direction. 

Orthonormal spherical harmonic functions are given by 

 

 �����,�� = �2� + 1

4	 �� −
�!�� +
�!����cos ������ , (1) 

 

where ����∙� is the associated Legendre function, and � and � are standard spherical 

coordinates. The assumption of the ODF being real and antipodally symmetric, 

however, makes the use of the RSSH basis [3] more suitable. RSSH functions are 



indexed by a single parameter 
 = ��� + 1�/2 +
 + 1, corresponding to �� and 
� , as 

follows [3]: 

 

 �� =
���
���−1���√2Re �������� , −�� ≤ 
� < 0���� , 
� = 0

√2Im ��
��

��� , 0 < 
� ≤ �� .
� (2) 

 

The ODF can be computed in this basis first by using a minimum square scheme to 

approximate the signal, and then by analytically computing the Funk-Radon 

transform, [2], following the method introduced in [3]–[5] for the original QBI, and 

subsequently adapted in [6] for the CSA-QBI. 

2.2 ODF Maxima Extraction 

RSSH functions, being smooth, allow us to find all the local maxima of the ODF ���,�� as points satisfying the following properties (subscripts indicate partial 

derivatives): 

 

 �	��,�� = 0, (3) 

 ����,�� = 0, (4) 

 det����,��� ≥ 0, (5) 

 tr����,��� ≤ 0, (6) 

 

with the Hessian matrix ���,�� defined as 

 

 ���,�� = ��		��,�� �	���,���	���,�� �����,���. (7) 

 

Equations (3) and (4) guarantee that ��,�� is either an extremum or a saddle point 

of the ODF. Inequalities (5) and (6) filter out, respectively, the saddle points and the 

local minima (including possible negative lobes), leaving us only with the local 

maxima of the ODF. The above expressions can all be analytically computed for an 

ODF expressed in the RSSH basis. However, the main challenge is to find the points 

that simultaneously satisfy equations (3) and (4). Once they are identified, applying 

inequalities (5) and (6) to filter out undesired points is trivial. 

Iterative approaches (e.g., Newton method) may be applied to solve equations (3) 

and (4). Yet, being quite sensitive to the initialization, they are not guaranteed to 

converge to all the maximum points. Alternatively, an exhaustive search will result in 

all the maxima with an accuracy determined by the discretization resolution. 

Nonetheless, with the ODF being a 2D manifold, the search space, and consequently 

the computational complexity of the algorithm, grows quadratically with the desired 

resolution. 



We will next show how the fourth order RSSH basis makes it possible to confine 

the search to a 1D space, thereby creating an efficient method to extract the maxima. 

2.3 Reducing the Dimension of the Search Space 

Let us assume that the ODF has been approximated in the fourth order RSSH basis, as 
 

 ���,�� =�������,��
�

��


. (8) 

 

Combining equations (1), (2), and (8), while substituting the values of ����cos �� 
from Table 1 leads to 

 

 

���,�� = �

2√	 + ��3 cos� � − 1� + ���� sin � cos � +  ��� sin� �

+ !�35 cos
 � − 30 cos� � + 3�
+ "����7 cos� � − 3� sin � cos �
+ #����7 cos� � − 1� sin� � + $��� cos � sin� �
+ ���� sin
 �, 

(9) 

 

where � = % �


��
�
, ���� = %
�

��
��� cos� − �� sin��, etc. (We drop the notation ��� in the rest of this subsection.) 

We now attempt to solve Eq. (4) by deriving Eq. (9) with respect to �. We then 

divide it by sin � cos� � and rearrange it, while using the identity sec� � = 1 +

tan� �, to obtain 
 

 
�� +  − #�� tan� � + �$ + � − 3"�� tan� � + �6# +  �� tan �

+ �� + 4"�� = 0. 
(10) 

 

Equation (10) is a cubic function of tan �, and can be analytically solved, leading 

to a closed-form expression for ����.1 Thus, for each given �, we obtain one, two, or 

three different real values for � which satisfy Eq. (4). 

The curve characterized by the pair �����,�� (Fig. 1(b)) is in fact our new 1D 

search space which contains all the ODF maxima as points satisfying equations (3), 

(5), and (6) (Fig. 1(c&d)). The number of these maxima does not need to be initially 

specified, since it is automatically determined by the algorithm and depends on 

various factors, such as the number of real solutions to Eq. (10). This is particularly 

important in practice, as different regions of the white matter naturally exhibit 

different complexity. The maxima can be found using a 1D exhaustive search (see 

Sec.  2.4), which is considerably faster than exploring the entire 2D manifold of the 

ODF.2 

                                                           
1 Each solution of tan� corresponds to a unique value of � ∈ �0, ��. Please note that this 

approach can also be applied in the RSSH basis of higher orders, with the difference that 

there may be no analytical solution for ����, and numerical methods may need to be applied. 
2 Such 1D exhaustive searches can also be performed using tensor-based approaches [14]– [16]. 



Table 1.  The associated Legendre functions required for the proposed algorithm. 

Function  Expression 

��
��cos�� = 1 

��
��cos�� = �1 2⁄ ��3 cos� � � 1� 

��
��cos �� = �3 cos � sin � 

��
��cos�� = 3 sin� � 

��
��cos�� = �1 8⁄ ��35 cos� � � 30 cos� � � 3� 

��
��cos �� = ��5 2⁄ ��7 cos� � � 3� cos � sin � 

��
��cos�� = �15 2⁄ ��7 cos� � � 1� sin� � 

��
��cos�� = �105 cos � sin� � 

��
��cos�� = 105 sin� � 

2.4 One-Dimensional Exhaustive Search 

Here we detail the discretization scheme used to perform the aforementioned 1D 

exhaustive search for the maxima. We exploit the closed-form description of the 

curve �����, �� provided by Eq. (10) and parameterize the curve with � ∈ �0,2
�. 
To achieve a constant spatial resolution Δ� 
 �Δ�� � sin� � Δ��, we need a variable 

step size Δ�: 
 

 Δ� 

Δ�

�� ′���� � sin� ����



1 � �����

�� ′���� � ����� � �����
Δ�, (11) 

 

which is rewritten as a function of ���� ≔ tan ����. For every �, Eq. (10) results in 

one, two or three real values for ����, for each of which � ′��� can be computed 

simply by deriving Eq. (10) with respect to �, and substituting for � and �. Therefore, 

at each step we choose Δ� to be the minimum of the three (or fewer) values obtained 

from Eq. (11). 

Next, we keep all the candidate points satisfying inequalities (5), (6), and the 

following, which is a relaxation of Eq. (3), 
 

 |����, ��| � �. (12) 
 

(a) (d) (b) (c) 

Fig. 1. (a) Reconstructed ODF.  (b) Analytically defined 1D space is searched.  (c) All the 

extrema and saddle points are identified.  (d) ODF maxima are extracted. 



We found an appropriate value of � 
 0.02~0.03 for the threshold. Note again 

that inequalities (5), (6), and (12) can all be computed analytically using equations 

(1), (2), (8), and Table 1. The ODF maxima are then computed as the mean directions 

corresponding to the clusters of points, created by processing all the candidate points, 

as follows: Each point is added to a previous cluster if its Euclidean distance to the 

representative (mean) point of that cluster is minimum among all other clusters and is 

smaller than a threshold (0.4 was used here). If no such cluster is found, a new cluster 

is created, and the algorithm goes on until all the candidate points are processed. 

3 Results and Discussion 

To validate our approach, we first show results on artificial data. We simulated fiber 

crossing by generating diffusion images from the sum of two exponentials, �� !� 

"#���

�
���� � #���

�
����$/2, where &� is a diagonal matrix with diagonal entries (9, 2, 2), 

and &� is &� rotated about the z-axis by a varying angle. CSA-ODFs were 

reconstructed in the fourth order RSSH basis from 76 diffusion directions, uniformly 

sampled on the sphere. The maxima were then extracted using the proposed 

technique, and results are depicted in Fig. 2 (top). Increasing the angular precision to 

0.5° revealed that multiple fiber orientations are resolved starting at the crossing angle 

of 37.5°. Choosing a spatial resolution of Δ� 
 0.001, required the evaluation of the 

ODF at 7.7×104 points, whereas a 2D search on the sphere with the same resolution 

would cost 1.6×10
7
 operations. When we repeated the experiment by adding Rician 

noise with a signal-to-noise ratio (SNR) of 40 (Fig. 2, bottom), the minimum angle 

where crossing was detected increased to 48°. Such experiments are commonly 

employed to evaluate the robustness of the ODF reconstruction algorithm to noise.  

We also tested our method on a popular public human brain dataset [17]. CSA-

ODFs were reconstructed in the fourth order RSSH basis from 200 diffusion images 

acquired at b=3000 s/mm². Figure 3 illustrates the ODFs with their extracted maxima 

superimposed on the fractional anisotropy (FA) map, in the region of the centrum 

semiovale, where three major fiber bundles intersect. To demonstrate the performance 

of the proposed technique, all the maxima are shown here, including those 

corresponding to slight variations in the ODF (for example due to noise). Major ODF 

peaks corresponding to fiber orientations may however be selected by placing a 

threshold on the ODF [3] or on its curvature [15]. 
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Fig. 2. Extracted maxima from synthetic ODFs with fiber crossing, in noise-free case (top), 

and with SNR=40 (bottom). 
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